show Abstracthide AbstractPulmonary fibrosis (PF) is associated with many chronic lung diseases including Systemic sclerosis (SSc), Idiopathic Pulmonary Fibrosis (IPF) and Cystic Fibrosis (CF) which are characterized by the progressive accumulation of mesenchymal cells and formation of scar tissue. Th2 T cell-derived cytokines including IL-4 and IL-13 have been shown to contribute to inflammation and fibrotic remodeling in multiple tissues. Interleukin-31 (IL-31) is a newly identified cytokine that is predominantly produced by CD4 Th2 T cells, but its signaling receptor IL-31RA is primarily expressed by non-hematopoietic cells. However, the potential role of the IL-31-IL31RA axis in pulmonary inflammation and fibrosis has remained largely unknown. To determine the role of IL-31 signaling in pulmonary fibrosis, wildtype, and IL-31RA knockout mice were treated with bleomycin and measured changes in total lung transcripts using RNA-seq. The total lung transcriptome analysis showed a significant reduction in fibrosis-associated gene transcripts including extracellular matrix and epithelial cell-associated gene networks. Overall design: mRNA profiles of IL-31 RA wild type, knock-out mice treated with bleomycin and measured changes in total lung transcripts.